Another Slant on the Mortgage Crisis

Jack Guttentag Presentation at the Brookings Institution, October 16, 2008

Known Causes of the Crisis

- Proximate Causes:
 - Unsustainable boom in house prices caused drastic easing of underwriting requirements
 - Price collapse caused marked rise in defaults
 - Price declines and rising defaults cause drastic tightening of underwriting requirements
- Factors Contributing to Defaults:
 - Rapacious loan providers
 - Dysfunctional principal/agent relationships
 - Toxic and poorly understood mortgages
 - Grossly inadequate disclosures
 - Accommodative appraisals

Causes of the Crisis (Con'd)

- Factors Contributing to Metastisization
 - New instruments, especially CDOs
 - Colossal lack of judgment by credit rating agencies
- But An Elephant Is Left Out of the Story
- The Elephant Is How the System Deals With Default Risk
 - How it prices it
 - What it does with the borrower payments designed to cover it

Mortgage Default Risk

- Default Risk on a Mortgage Has Two Components
- Collateral Risk: Investor Who Forecloses Fails to Recover Unpaid Balance Plus Foreclosure Costs
- Cash Flow Risk: Until Final Resolution, Loan in Default is Non-Performing and Non-Marketable

Borrower Payments For Default Risk

Borrowers Pay in Two Ways

- Mortgage insurance premium based on LTV
- Interest rate risk premium over "prime" rate

Borrower Payments For Default Risk

- Characteristics of Premiums on Traditional Mortgage Insurance (TMI)
 - Covers collateral risk only
 - Premiums are based on loss estimates over long periods, and change infrequently
 - About half of all premiums collected are reserved and available when a default crunch occurs, as right now

Borrower Payments For Default Risk (Con'd)

Characteristics of Rate Risk Premiums

- Very little reserving: premiums not used to meet current losses are realized as income
 - Excess premiums on loans originated in 2000-2005 not available to meet losses on 2006-8 vintages
- Generally higher than premiums based on long-run actuarial loss experience
- An illustration

Interest Rate Risk Premium Vs Mortgage Insurance Premium

Characteristics of High-Risk and Low-Risk Loans

	Low-Risk Loan	High-Risk Loan	
Purchase Price:	\$444,444	\$444,444	
Loan (\$) / (LTV):	\$400,000 / 90%	\$400,000 / 90%	
TMI Coverage:	25%	25%	
Borrower FICO:	700	700	
Property Type:	Single Family	Single Family	
Occupancy:	Primary Residence	Investment	
Loan Purpose:	Purchase	Cash Out Refi	
Documentation:	Full	None	
Loan Rate ¹ :	6.000%	9.875%	
TMI Premium ² :	.67%	1.29%	

¹Based on wholesale prices as of November 21, 2007. ²Based on MGIC Rate Finder. Interest Rate Risk Premium Vs Mortgage Insurance Premium

- High-Risk Loan Carries Risk Premium of 3.875% Over Low-Risk Loan When Both Have PMI
- High-Risk Loan Carries MI Premium .67% Higher Than Low-Risk Loan
- Incremental Charge by Investor 6 Times Larger
- Incremental Risk Exposure Larger For Insurer, Who Is In First Loss Position
 - PMI incurs loss from foreclosure unless property appreciates substantially
 - Investor incurs no loss unless property depreciates
 - PMI almost always loses more than investor

Why Investors Charge More To Assume Default Risk Than Insurers

- Gaming Analogy: Default Losses Set by Spin of Roulette Wheel Which Has 14 Blue Slots, 1 Red
 - Annual losses from defaults are 0.1% if blue comes up, 6% if red comes up
 - Required reserve allocation over long-run is 0.5%, mortgage insurer will charge about 1%
 - Insurer diversifies over time
 - Investor who is not reserved must charge 6% for complete protection
 - Competition won't allow this, but premium will exceed 1%
 - Must be high enough to induce investors to assume risk of failure
 - Premium between 1% and 6% is both too large and too small

The Major Systemic Weakness

- For Every Risk-Based Dollar Paid by Borrowers That Is Subject to Reserving, They Pay Ten or More Risk-Based Dollars That Are Not Subject to Reserving
- The Remedy Is to Switch to a System in Which All Risk-Based Charges to Borrowers Are Subject to Reserving
 - We call this "Mortgage Payment Insurance"

How MPI Would Work

- Covers Cash Flow Risk: the Risk That Borrower Default Will Interrupt Cash Flow
 - PMI makes scheduled payments on behalf of borrower From default to foreclosure
 - Any cure payments are credited to the PMI
 - MPI will have time limits on scheduled payments
- Covers Collateral Risk: the Risk That Lender Fails to Recover the Balance Plus Foreclosure Costs
 - At foreclosure, PMI pays any deficiency not recovered by foreclosure sale up to limitation of coverage
 - Same protection now provided by existing policies

Managing and Pricing Risk: TMI vs. MPI

<u>TMI</u>

- Lender has collateral loss protection at foreclosure
- Lender *vulnerable* to cash flow interruption
- Borrower pays insurance premium
- Borrower also pays interest rate risk premium
- Loan rate varies with risk prem
- Lender and PMI underwrite, investor sets required coverage
- Credit risk transferable

<u>MPI</u>

- Lender has collateral loss protection at foreclosure
- Lender *protected* against cash flow interruption
- Borrower pays insurance premium
- Borrower does *not* pay an interest rate risk premium
- All insured loans priced as prime
- PMI underwrites, investor sets required coverage
- Credit risk retained by PMI

Benefits of MPI

Wider Reserving Reduces Systemic Risk

- Losses during default crunch episode reduce reserves rather than capital
- Lower Cost to Non-Prime Borrowers
- Elimination of Major Principal/Agent Problem
 - Mortgage insurers underwrite all mortgages and take 100% of default risk
 - Insurers cannot pass the risk along to the next party in a chain of ownership transfers

Benefits of MPI (Con'd)

Insurers Become Ally of Borrowers

- Insurers have incentive to prevent lenders from over-charging borrowers, which increase losses to insurers
- Insurers will have the power to prevent overcharges
 - An MPI commitment equals loan approval which can be given directly to borrowers
 - This positions insurers to refer borrowers to lenders
 - Insurers will use referral power to protect borrowers

Benefits of MPI (Con'd)

Strengthen Position of PMI Industry

- Cannot now control rates/points charged borrowers, which affects losses
- Cannot now take account of rates/points in setting insurance premiums
- Now vulnerable to increased losses from lending excesses that generate defaults and house price declines
- Short-term: increased flow of premium income will help stave off disaster

How Much More Will MPI Cost?

In Most Cases, MPI Will Cost Less Than TMI! MPI Cash Flow Payments Are Recovered At Settlement

- Principal payments advanced are recovered in smaller balance
- Interest payments advanced are recovered in smaller accrued interest
- Only net loss to insurer is interest opportunity loss on payment advances

MPI Costs Reduced By Lower Interest Rates

- Unpaid interest charge due at settlement will be lower
- Loan balance due at settlement will be lower
- Largest cost savings on riskiest loans carrying highest rates

Loans Used to Illustrate Costs on MPI vs. TMI

Characteristics of High-Risk and Low-Risk Loans

	Low-Risk Loan	High-Risk Loan
Purchase Price:	\$444,444	\$444,444
Loan (\$) / (LTV):	\$400,000 / 90%	\$400,000 / 90%
TMI Coverage:	25%	25%
Borrower FICO:	700	700
Property Type:	Single Family	Single Family
Occupancy:	Primary Residence	Investment
Loan Purpose:	Purchase	Cash Out Refi
Documentation:	Full	None
Loan Rate ¹ :	6.000%	9.875%
TMI Premium ² :	.67%	1.29%

¹Based on wholesale prices as of November 21, 2007. ²Based on MGIC Rate Finder. Breakdown of Cost Savings: MPI At 6% vs. TMI At 9.875%

- Assumptions:
 - Loan defaults after 24months
 - Foreclosure completed 12 months after default
 - Lender disposes of property 9 months after foreclosure
 - House value at disposition is 20% lower than at origination
 - Foreclosure expenses estimated using HUD data in <u>Providing</u> <u>Alternatives to Mortgage Foreclosure: A Report to Congress</u>, March 1996.
 - Risk premium on high-risk loan is eliminated
 - High-risk rate becomes 6%
 - Interest loss on cash flow advances calculated at 6%

Breakdown of Total Cost Savings: MPI At 6% vs. TMI At 9.875%

Incremental Costs of MPI

Payment Advances, Default to Foreclosure:	\$28,778
Interest Opportunity Cost to Insurer of Payment Advances	805
Total	29,583

Cost Savings of MPI

0.		
-	No Accrued Interest Charges Due at Foreclosure	39,025
•	Lower Loan Balance at Default	5,327
•	Insurer Principal Payments, Default to Foreclosure	5.537
•	Interest Earned by Investor on Payment Advances	805
•	Total	50,694

Net Saving on MPI

\$21,111

Loss Reduction on MPI as a Function of Interest Rate Reduction

	Loss Reduction From Using MPI Rather Than TMI		
Interest Rate Reduction	Total Loss Reduction	Loss Reduction to Insurer	Loss Reduction to Investor
3.875%	\$21,111 (12.2%)	\$4,473	\$16,638
3.000%	\$16,648 (9.9%)	\$3,357	\$13,291
2.000%	\$11,368 (6.9%)	\$2,037	\$9,331
1.000%	\$5,876 (3.7%)	\$664	\$5,212
0.500%	\$3,043 (2.0%)	-\$44	\$3,087
0.000%	\$151 (0.0%)	-\$767	\$918

Summary Statement

- PMIs Can Insure Default Risk Using MPI For Less Than the Cost of Insuring Collateral Risk Alone
- Long-Run Consequences:
 - Lower financing cost to non-prime borrowers
 - Reserving pervasive, reducing systemic vulnerability
 - Concentrates underwriting responsibility, eliminates principal/agent problem
 - PMIs become ally of borrowers to prevent over-charges
- Short-Run Consequences:
 - Increase affordability to non-prime borrowers
 - Increase premium income of PMIs, helping them survive crisis

Implementation

- MPI Impossible in Portfolio System
 - Lenders would never delegate underwriting and pricing discretion
- MPI Workable in Secondary Market System
 - Requires that investors price loans with MPI at prime (wholesale)
 - Lenders add markup to cover retail costs
 - We are discussing it with Fannie Mae

Why Should Fannie Mae Support MPI?

Long-Run

- Reduced systemic vulnerability
- Eliminates political issues associated with risk-based pricing by Fannie
 - The market served by Fannie is whatever PMIs are willing to insure
- Aligns Fannie's interest with PMIs' and borrowers'
 - Fannie and PMIs could integrate counseling tools and underwriting

Short-Run

 Increase premium income of PMIs, help stabilize PMIs, which is critically important to Fannie Concluding Comment: The Reserving Principle

- MPI Applies to PMIs But Reserving Principle Has Broader Applicability
- Principle Is "Reserving Over Time" (ROT)
 - Amount reserved tied to risk of loss
 - Reserve allocation is transaction specific
- Capital Requirements Have a Pro-Cyclical Bias
 - Firm can increase risk without increasing required capital by shifting to riskier assets within asset categories
- With ROT, a Shift to Riskier Assets Increases Reserve Allocations

ROT as Replacement or Supplement to Capital Requirements

Illustrative Rule For a Depository

- Required allocation to contingency reserve is 50% of the risk-based portion of any charge
 - EG, if prime mortgage is 6% and zero points, reserve on a 7% 2 point loan is ½% plus 1 point
 - EG, on credit default swaps, 100% of premium is risk-based, reserve allocation is 50% of premium
- Principal role of regulator is defining the part of various types of charges that is risk-based

Advantages of ROT Relative to Capital Requirements

- ROT Is Immune to Cyclical Swings in Market Sentiment
 - During euphoric upswing, reserve allocations rise
 - With capital requirements, risk exposure increases with no increase in required capital
- ROT Has Wider Applicability
 - Credit default swaps would have faced a requirement to reserve 50% of premiums